公务员()考试行测之数学运算中,时常会出现一类具有鲜明题干特征的题目,即“至少……才能保证……”,解答这类题目,需要从最不利的情况出发进行分析,即所谓的最不利原则。便可简单便捷的得到正确答案。中公教育专家通过具体的例子来说明最不利原则及如何运用。 例1:口袋里有同样大小、同样质地的红、黄、绿三种颜色的小球各10个。问一次至少摸出几个小球,才能保证有3个小球的颜色相同? 【中公解析】如果碰巧一把摸出的3个小球颜色相同,就回答是“3”,那么显然不对,因为摸出的3个小球也可能颜色各不相同。回答“3”是从最“有利”的情况考虑的,但为了“保证3个小球颜色相同”,就要从最“不利”的情况考虑。如果在最不利的情况下都能满足题目要求,那么其它情况必然也能满足题目要求。 “最不利”的情况是什么呢?那就是摸出了2个红球、2个黄球和2个绿球,此时三种颜色的球都是2个,却无3个球同色,这样摸出的6个球是“最不利”的情行。这时只要再摸出一个球,无论是红色、黄色或绿色,就能保证有3个小球同色,所以一次至少摸出7个球。 【中公总结】见到“至少(最少)……才能保证……”的题目就可判断需利用“最不利原则”解题。所谓最不利原则,就是这种情况将要发生但就是没发生。这时,只要再加“1”就必然(保证)发生了。 例2:有300名求职者参加高端人才专场招聘会,其中软件设计类、市场营销类、财务管理类和人力资源管理类分别有100、80、70和50人。问至少有多少人找到工作,才能保证一定有70名找到工作的人专业相同?( ) A.71B.119C.258D.277 【中公解析】最差的情况:软件设计类、市场营销类、财务管理类和人力资源类找到工作的人数分别为69、69、69、50人,此时再有任意1人即可保证一定有70名找到工作的人专业相同,即至少有69+69+69+50+1=258人。 例3:某单位组织党员参加党史、党风廉政建设、科学发展观和业务能力四项培训,要求每名党员参加且只参加其中的两项。无论如何安排,都有至少5名党员参加的培训完全相同,问该单位至少有多少名党员?( ) A.17B.21C.25D.29 【中公解析】貌似该题与上述2题不同,但其等价于“至少有多少党员参加培训,才能保证一定有5名党员参加的培训完全相同”。若“每名党员只参加其中的一项”,也就是说,培训内容共有4项,最差的情况:参加党史、党风廉政建设、科学发展观和业务能力的党员分别为4、4、4、4名,此时再有1名党员无论选择哪个培训项目,一定有5名党员的培训内容一样,即单位至少得有4+4+4+4+1=17名党员。但要求是“每名党员参加且只参加其中的两项”,区别于前述假设,不同之处在于,此时的培训内容有 项组合,接下来的分析类似,那么,单位至少有4×6+1=25名党员,才能保证至少5名党员参加的培训完全相同。 【中公总结】我们需要掌握知识点的本质核心,要有转化思想,灵活应用,变不熟悉为熟悉,从而正确、快速解题。 |
[发布者:yezi] | ||
相关阅读:
·人社部部长:国考录用公务员研究生超六成
·2013公务员考试申论范文:发展实体经济
·最不利原则快解公务员考试行测算数题
·2013公务员面试热点:1068个会议
·公务员面试心态准备:摆脱焦虑“死循环”
|